Working in 2 & 3 dimensions

Tips for Revising

- Make sure you *know what you will be tested on*. The main topics are listed below. The examples show you what to do.
- List the topics and *plan a revision timetable*.
- *Always revise actively* by working through questions. Look at the examples when you need to. Tick each topic when you have revised it this will help you feel more positive!
- Write a list of the formulae you need to know. *Learn these formulae* and *test yourself* (eg by writing out the formulae from memory).
- Try lots of *past papers* you can download them from the AQA website at <u>www.aqa.org.uk</u>
- When you get the Data Sheet, think about *what questions might be asked*. Practise them.

Tips for the exam

- *Don't panic!* Easier said than done! but try to stay calm. It will help you think more clearly.
- *Read each question carefully.* Underline important information if it helps.
- If you have time left at the end, *check your answers*. If you decide to change an answer, cross out the old answer.

The methods that you need are listed below. You will have a calculator in the exam, so the examples show how to use a calculator to solve the problems, rather than other methods.

Measurements	
Lengths - you may need to measure to the nearest mm or cm.	
The arrow shows 3.8 cm or 38 mm to the nearest mm . This measurement is 4 cm to the nearest cm . $\begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1$	
Angles - make sure you use the right scale on your protractor. Follow the scale round from zero.	
Scale drawings	
A scale of 1 : <i>n</i> means the real distances are <i>n</i> times more than those on the plan or map . Angles stay the same.	
To find an actual distance, multiply by <i>n</i>	To find a distance for a plan or model, divide by <i>n</i>
Example The plan of a room has a scale of 1 : 50. The length of the room on the plan is 9.6 cm. What is the actual length of the room in metres?	Example A model of a boat has a scale of 1 : 20. The length of the boat is 8.6 m. What is the length of the model in millimetres?
Actual length = $9.6 \times 50 = 480$ cm	Actual length = $8.6 \text{ m} = 8.6 \times 1000 = 8600 \text{ mm}$
Actual length = $480 \div 100 = 4.8 \text{ m}$	Length of model = $8600 \div 20 = 430 \text{ mm}$
Plans and Elevations	
<i>Example</i> Plan	Plan – the view from above
Front	
Front elevation – the view from the front	Side elevation – the view from the side
	Exam questions often ask you to draw an accurate elevation to scale .

Constructions (continued)

You may also be asked to construct a rectangle or a triangle with given sides or angles.

